Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Virol ; 97(2): e0194722, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2193457

ABSTRACT

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


Subject(s)
CD13 Antigens , Deltacoronavirus , Spike Glycoprotein, Coronavirus , Virus Internalization , Animals , CD13 Antigens/genetics , CD13 Antigens/metabolism , Chickens/metabolism , Coronavirus Infections , Deltacoronavirus/metabolism , Swine , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Lentivirus/genetics , Lentivirus/metabolism
2.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1653430

ABSTRACT

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Genome, Viral , RNA, Viral/genetics , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Gene Dosage , Gene Expression , Humans , Jurkat Cells , Lentivirus/genetics , Lentivirus/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/metabolism , RNA, Viral/standards , Reagent Kits, Diagnostic/supply & distribution , Reference Standards , Reproducibility of Results , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging
3.
PLoS One ; 16(3): e0248348, 2021.
Article in English | MEDLINE | ID: covidwho-1388906

ABSTRACT

Pseudoviruses are useful surrogates for highly pathogenic viruses because of their safety, genetic stability, and scalability for screening assays. Many different pseudovirus platforms exist, each with different advantages and limitations. Here we report our efforts to optimize and characterize an HIV-based lentiviral pseudovirus assay for screening neutralizing antibodies for SARS-CoV-2 using a stable 293T cell line expressing human angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We assessed different target cells, established conditions that generate readouts over at least a two-log range, and confirmed consistent neutralization titers over a range of pseudovirus input. Using reference sera and plasma panels, we evaluated assay precision and showed that our neutralization titers correlate well with results reported in other assays. Overall, our lentiviral assay is relatively simple, scalable, and suitable for a variety of SARS-CoV-2 entry and neutralization screening assays.


Subject(s)
COVID-19/metabolism , Lentivirus/metabolism , Neutralization Tests/methods , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
4.
FASEB J ; 35(9): e21801, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345745

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in mediating viral entry into host cells. However, whether it contributes to pulmonary hyperinflammation in patients with coronavirus disease 2019 is not well known. In this study, we developed a spike protein-pseudotyped (Spp) lentivirus with the proper tropism of the SARS-CoV-2 spike protein on the surface and determined the distribution of the Spp lentivirus in wild-type C57BL/6J male mice that received an intravenous injection of the virus. Lentiviruses with vesicular stomatitis virus glycoprotein (VSV-G) or with a deletion of the receptor-binding domain (RBD) in the spike protein [Spp (∆RBD)] were used as controls. Two hours postinfection (hpi), there were 27-75 times more viral burden from Spp lentivirus in the lungs than in other organs; there were also about 3-5 times more viral burden from Spp lentivirus than from VSV-G lentivirus in the lungs, liver, kidney, and spleen. Deletion of RBD diminished viral loads in the lungs but not in the heart. Acute pneumonia was observed in animals 24 hpi. Spp lentivirus was mainly found in SPC+ and LDLR+ pneumocytes and macrophages in the lungs. IL6, IL10, CD80, and PPAR-γ were quickly upregulated in response to infection in the lungs as well as in macrophage-like RAW264.7 cells. Furthermore, forced expression of the spike protein in RAW264.7 cells significantly increased the mRNA levels of the same panel of inflammatory factors. Our results demonstrated that the spike protein of SARS-CoV-2 confers the main point of viral entry into the lungs and can induce cellular pathology. Our data also indicate that an alternative ACE2-independent viral entry pathway may be recruited in the heart and aorta.


Subject(s)
Macrophages/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Spike Glycoprotein, Coronavirus/immunology , Acute Disease , Alveolar Epithelial Cells/virology , Animals , B7-1 Antigen , Cell Line , Inflammation Mediators , Interleukin-10 , Interleukin-6 , Lentivirus/genetics , Lentivirus/isolation & purification , Lentivirus/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/virology , Male , Membrane Glycoproteins , Mice , Mice, Inbred C57BL , PPAR gamma , RAW 264.7 Cells , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins
5.
J Biol Chem ; 296: 100306, 2021.
Article in English | MEDLINE | ID: covidwho-1152462

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Clathrin Heavy Chains/genetics , Endocytosis/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization/drug effects , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , Clathrin Heavy Chains/antagonists & inhibitors , Clathrin Heavy Chains/metabolism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Hydrazones/pharmacology , Lentivirus/genetics , Lentivirus/metabolism , Protein Binding/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology , Thiazolidines/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL